About SpaceX:

Space Exploration Technologies Corporation, better known as SpaceX, is an American aerospace manufacturer and space transport services company headquartered in Hawthorne, California. It was founded in 2002 by entrepreneur Elon Musk with the goal of reducing space transportation costs and enabling the colonization of Mars. SpaceX has since developed the Falcon launch vehicle family and the Dragon spacecraft family, which both currently deliver payloads into Earth orbit. SpaceX’s achievements include the first privately funded liquid-propellant rocket to reach orbit (Falcon 1 in 2008); the first privately funded company to successfully launch, orbit, and recover a spacecraft (Dragon in 2010); the first private company to send a spacecraft to the International Space Station (Dragon in 2012); the first propulsive landing for an orbital rocket (Falcon 9 in 2015); and the first reuse of an orbital rocket (Falcon 9 in 2017). As of March 2017, SpaceX has since flown ten missions to the International Space Station (ISS) under a cargo resupply contract. NASA also awarded SpaceX a further development contract in 2011 to develop and demonstrate a human-rated Dragon, which would be used to transport astronauts to the ISS and return them safely to Earth.


SpaceX announced in 2011 that they were beginning a privately funded reusable launch system technology development program. In December 2015, a first stage was flown back to a landing pad near the launch site, where it successfully accomplished a propulsive vertical landing. This was the first such achievement by a rocket for orbital spaceflight. In April 2016, with the launch of CRS-8, SpaceX successfully vertically landed a first stage on an ocean drone-ship landing platform. In May 2016, in another first, SpaceX again landed a first stage, but during a significantly more energetic geostationary transfer orbit mission. In March 2017, SpaceX became the first to successfully re-launch and land the first stage of an orbital rocket.
In September 2016, CEO Elon Musk unveiled the mission architecture of the Interplanetary Transport System program, an ambitious privately funded initiative to develop spaceflight technology for use in manned interplanetary spaceflight, and which, if demand emerges, could lead to sustainable human settlements on Mars over the long term. This is the main purpose this System was designed for. In 2017, Elon Musk announced that the company had been contracted by two private individuals to send them in a Dragon spacecraft on a free return trajectory around the Moon. Provisionally launching in 2018, this could become the first instance of lunar tourism.

Goals

Musk has stated that one of his goals is to improve the cost and reliability of access to space, ultimately by a factor of ten. The company plans in 2004 called for “development of a heavy lift product and even a super-heavy, if there is customer demand” with each size increase resulting in a significant decrease in cost per pound to orbit. A major goal of SpaceX has been to develop a rapidly reusable launch system. As of March 2013, the publicly announced aspects of this technology development effort include an active test campaign of the low-altitude, low-speed Grasshopper vertical takeoff, vertical landing (VTVL) technology demonstrator rocket, and a high-altitude, high-speed Falcon 9 post-mission booster return test campaign where beginning in mid-2013, with the sixth overall flight of Falcon 9 every first stage will be instrumented and equipped as a controlled descent test vehicle to accomplish propulsive-return over-water tests. SpaceX COO Gwynne Shotwell said at the Singapore Satellite Industry Forum in summer 2013 “If we get this reusable technology right, and we’re trying very hard to get this right, we’re looking at launches to be in the US$5 to 7 million range, which would really change things dramatically.”
Musk stated in a 2011 interview that he hopes to send humans to Mars’ surface within 10–20 years. In 2010, Musk’s calculations convinced him that the colonization of Mars was possible. In June 2013, Musk used the descriptor “Mars Colonial Transporter” only later changed to “Interplanetary Transport System” to refer to the privately funded development project to design and build a spaceflight system of rocket engines, launch vehicles and space capsules to transport humans to Mars and return to Earth.

Achievements

Landmark achievements of SpaceX include:
• The first privately funded liquid-fueled rocket to reach orbit (Falcon 1 Flight 4 — September 28, 2008)
• The first privately funded company to successfully launch, orbit, and recover a spacecraft (Falcon 9 Flight 2 — December 9, 2010)
• The first private company to send a spacecraft to the International Space Station (Falcon 9 Flight 3 — May 25, 2012)
• The first private company to send a satellite into geosynchronous orbit (Falcon 9 Flight 7 — December 3, 2013)
• The first landing of an orbital rocket’s first stage on land (Falcon 9 Flight 20 — December 22, 2015)
• The first landing of an orbital rocket’s first stage on an ocean platform (Falcon 9 Flight 23 — April 8, 2016)
• The first relaunch and landing of a used orbital rocket (Falcon 9 Flight 32 — March 30, 2017)
• The first controlled fly back and recovery of a payload fairing (Falcon 9 Flight 32 March 30, 2017).
• On June 3, 2017, SpaceX’s Falcon 9 rocket successfully launched a Dragon spacecraft for the company’s eleventh Commercial Resupply Services mission (CRS-11) to the International Space Station. This mission marked the first reflight of a Dragon spacecraft, having previously flown during the fourth Commercial Resupply Services (CRS-4) mission back in September 2014.
In December 2015, SpaceX launched an upgraded Falcon 9 rocket from Cape Canaveral Air Force Station into Low Earth orbit, on a mission designated Flight 20. After completing its primary burn, the first stage of the multistage rocket detached from the second stage as usual. The first stage then fired three of its engines to send it back to Cape Canaveral, where it achieved the world’s first successful landing of a rocket that was used for an orbital launch. The upgraded Falcon 9 rocket is currently the only space launch system that uses densified propellants. SpaceX successfully re-introduced this technology with the aforementioned Flight 20. Before, propellant densification had been used only on some ICBMs, which are no longer in service, and the (unsuccessful) Soviet lunar rocket N1.

Infrastructure

SpaceX is headquartered in California, which also serves as their primary manufacturing plant. They own a test site in Texas, and operate three current launch sites, with another under development. SpaceX also run regional offices in Texas, Virginia, and Washington, D.C.and a satellite development facility in Seattle. SpaceX utilizes a high degree of vertical integration in the production of its rockets and rocket engines. SpaceX builds its rocket engines, rocket stages, spacecraft, principal avionics and all software in-house in their Hawthorne facility, which is unusual for the aerospace industry. Nevertheless, SpaceX still has over 3,000 suppliers with some 1,100 of those delivering to SpaceX nearly weekly.

Development and test facility

SpaceX operates their Rocket Development and Test Facility in McGregor, Texas. All SpaceX rocket engines are tested on rocket test stands, and low-altitude VTVL flight testing of the Falcon 9 Grasshopper v1.0 and F9R Dev1 test vehicles were carried out at McGregor. The company purchased the McGregor facilities from Beal Aerospace, where it refitted the largest test stand for Falcon 9 engine testing. SpaceX has made a number of improvements to the facility since purchase, and has also extended the acreage by purchasing several pieces of adjacent farmland. In 2011, the company announced plans to upgrade the facility for launch testing a VTVL rocket, and then constructed a half-acre concrete launch facility in 2012 to support the Grasshopper test flight program. As of October 2012, the McGregor facility has seven test stands that are operated “18 hours a day, six days a week” and is building more test stands because production is ramping up and the company has a large manifest in the next several years. In addition to routine testing, Dragon capsules (following recovery after an orbital mission), are shipped to McGregor for de-fueling, cleanup, and refurbishment for reuse in future missions.

 

Launch facilities

1. Cape Canaveral: Cape Canaveral Air Force Station Space Launch Complex 40 (SLC-40) is used for Falcon 9 launches to low-earth and geostationary orbits. SLC-40 is not capable of supporting Falcon Heavy launches, or polar launches. As part of SpaceX’s booster reusability program, the former Launch Complex 13 at Cape Canaveral, now renamed Landing Zone 1, has been designated for use for Falcon 9 first-stage booster landings. Falcon 9 Flight 20 landing on Landing Zone 1 in December 2015.

2. Vandenberg: Vandenberg Air Force Base Space Launch Complex 4 East (SLC-4E) is used for payloads to polar orbits. The Vandenberg site can launch both Falcon 9 and Falcon Heavy, but cannot launch to low inclination orbits. Post-launch landings will take place at the neighboring SLC-4W.

3. Kennedy Space Center: Kennedy Space Center Launch Complex 39A (LC39A) has been under development by SpaceX since December 2013, when NASA announced that they had selected SpaceX as the new commercial tenant. SpaceX plans to launch their Falcon 9 and Falcon Heavy from the pad and build a new hangar near it. Elon Musk, has stated that he wants to shift most of SpaceX’s NASA launches to LC39A, including Commercial Cargo and Crew missions to the ISS.

4. Brownsville: In August 2014, SpaceX announced they would be building a commercial-only launch facility at Brownsville, Texas. The Federal Aviation Administration released a draft Environmental Impact Statement for the proposed Texas facility in April 2013, and “found that ‘no impacts would occur’ that would force the Federal Aviation Administration to deny SpaceX a permit for rocket operations,” and issued the permit in July 2014. SpaceX started construction on the new launch facility in 2014 with production ramping up in the latter half of 2015, with the first launches from the facility no earlier than late 2018. Real estate packages at the location have been named by SpaceX with names based on the theme “Mars Crossing”.

Research and development

SpaceX is actively pursuing several different research and development programs. Most notable are the programs intended to develop reusable launch vehicles, an interplanetary transport system, and a global telecommunications network. SpaceX has on occasion developed new engineering development technologies to enable it to pursue its various goals. For example, at the 2015 GPU Technology Conference, SpaceX revealed their own computational fluid dynamics (CFD) software to improve the simulation capability of evaluating rocket engine combustion design.

Reusable launch system

SpaceX’s reusable launcher program was publicly announced in 2011 and the design phase was completed in February 2012. The system returns the first stage of a Falcon 9 rocket to its launchpad using only its own propulsion systems. SpaceX’s active test program began in late 2012 with testing low-altitude, low-speed aspects of the landing technology. Grasshopper and the Falcon 9 Reusable Development Vehicles (F9R Dev) were experimental technology-demonstrator reusable rockets that performed vertical takeoffs and landings. DragonFly is a test vehicle to develop propulsive and propulsive-assist landing technologies in a series of low-altitude flight tests planned to be conducted in 2015–2016.
High-velocity, high-altitude aspects of the booster atmospheric return technology began testing in late 2013 and have continued through 2016. SpaceX has been improving the autonomous landing and recovery of the first stage of the Falcon 9 launch vehicle, with steadily increasing success. As a result of Elon Musk’s goal of crafting more cost-effective launch vehicles, SpaceX conceived a method to reuse the first stage of their primary rocket, the Falcon 9, by attempting propulsive vertical landings on solid surfaces. Once the company determined that soft landings were feasible by touching down over the Atlantic and Pacific Ocean, they began landing attempts on a solid platform. SpaceX leased and modified several barges to sit out at sea as a target for the returning first stage, converting them to autonomous spaceport drone ships (ASDS). SpaceX first achieved a successful landing and recovery of a first stage in December 2015, and in April 2016, the first stage booster first successfully landed on the ASDS Of Course I Still Love You.

Interplanetary Transport System

SpaceX is developing a super-heavy lift launch vehicle the ITS launch vehicle a fully reusable booster stage and integrated second-stage/spacecraft Interplanetary Spaceship and ITS tanker to support flights to interplanetary space. Development of the Interplanetary Transport System and its super-heavy launch vehicle will be the major focus of SpaceX once Falcon Heavy and DragonCrew are flying regularly. The ITS architecture was announced by Elon Musk during the 67th International Astronautical Congress in September, 2016. The next iterration, with a scaled down and more affordable spacecraft, is expected to be out at the next IAC in September, 2017.
SpaceX has signaled on multiple occasions that it is interested in developing much larger engines than it has done to date. A conceptual plan for the Raptor project was first unveiled in a June 2009 AIAA presentation. In November 2012, Musk announced a new direction for propulsion side of the company: developing LOX/methane rocket engines for launch vehicle main and upper stages. The Raptor LOX/methane engine will use the more efficient staged combustion cycle, a departure from the open cycle gas generator cycle system and LOX/RP-1 propellants that the current Merlin 1 engine series uses.” The rocket would be more powerful than previously released publicly, with over 1,000,000 lbf (4,400 kN) of thrust. The Raptor engine will likely be the first in a family of methane-based engines SpaceX intends to build. In August 2016, a Raptor engine was shipped to the McGregor testing facility in Texas, where it is undergoing development testing.

Musk’s long term vision for the company is the development of technology and resources suitable for human colonization on Mars. He has expressed his interest in someday traveling to the planet, stating “I’d like to die on Mars, just not on impact.” A rocket every two years or so could provide a base for the people arriving in 2025 after a launch in 2024. According to Steve Jurvetson, Musk believes that by 2035 at the latest, there will be thousands of rockets flying a million people to Mars, in order to enable a self-sustaining human colony.

Spacecraft and flight hardware

SpaceX currently manufactures two broad classes of rocket engine in-house: the kerosene fueled Merlin engines and the hypergolic fueled Draco/SuperDraco vernier thrusters. The Merlin powers their two main space launch vehicles: the large Falcon 9, which flew successfully into orbit on its maiden launch in June 2010 and the super-heavy class Falcon Heavy, which is scheduled to make its first flight in 2017. SpaceX also manufactures the Dragon, a pressurized orbital spacecraft that is launched on top of a Falcon 9 booster to carry cargo to low-Earth orbit, and the follow-on Dragon 2 spacecraft, currently in the process of being human-rated through a variety of design reviews and flight tests that began in 2014.

Rocket engines

Since the founding of SpaceX in 2002, the company has developed three families of rocket engines Merlin and Kestrel for launch vehicle propulsion, and the Draco control thrusters. SpaceX is currently developing two further rocket engines: SuperDraco and Raptor. Merlin is a family of rocket engines developed by SpaceX for use on its Falcon rocket family of launch vehicles. Merlin engines use LOX and RP-1 as propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse. The injector at the heart of Merlin is of the pintle type that was first used in the Apollo Program for the lunar module landing engine. Propellants are fed via a single shaft, dual impeller turbo-pump.
Kestrel is a LOX/RP-1 pressure-fed rocket engine, and was used as the Falcon 1 rocket’s second stage main engine. It is built around the same pintle architecture as SpaceX’s Merlin engine but does not have a turbo-pump, and is fed only by tank pressure. Its nozzle is ablatively cooled in the chamber and throat, is also radiatively cooled, and is fabricated from a high strength niobium alloy.
Draco are hypergolic liquid-propellant rocket engines that utilize monomethyl hydrazine fuel and nitrogen tetroxide oxidizer. Each Draco thruster generates 400 newtons (90 lbf) of thrust. They are used as reaction control system (RCS) thrusters on the Dragon spacecraft. SuperDraco engines are a much more powerful version of the Draco thrusters, which will be initially used as landing and launch escape system engines on the version 2 Dragon spacecraft, Dragon 2. Raptor is a new family of methane-fueled full flow staged combustion cycle engines to be used in its future Interplanetary Transport System. Development versions have been test fired.

Falcon launch vehicles

Falcon 1 was a small rocket capable of placing several hundred kilograms into low earth orbit. It functioned as an early test-bed for developing concepts and components for the larger Falcon 9. Falcon 1 attempted five flights between 2006 and 2009. On September 28, 2008, on its fourth attempt, the Falcon 1 successfully reached orbit, becoming the first privately funded, liquid-fueled rocket to do so. Falcon 9 is an EELV-class medium-lift vehicle capable of delivering up to 22,800 kilograms (50,265 lb) to orbit, and is intended to compete with the Delta IV and the Atlas V rockets, as well as other launch providers around the world. It has nine Merlin engines in its first stage. The Falcon 9 v1.0 rocket successfully reached orbit on its first attempt on June 4, 2010. Its third flight, COTS Demo Flight 2, launched on May 22, 2012, and was the first commercial spacecraft to reach and dock with the International Space Station. The vehicle was upgraded to Falcon 9 v1.1 in 2013 and again in 2015 to the current Falcon 9 Full Thrust version. As of March 2017, Falcon 9 vehicles have flown 30 successful missions with two failures, one after launch and the other during fueling for a routine pre-launch static fire.
In 2011, SpaceX began development of the Falcon Heavy, a heavy-lift rocket configured using a cluster of three Falcon 9 first stage cores with a total 27 Merlin 1D engines and propellant crossfeed. The first stage would be capable of lifting 63,957 kilograms (141,100 lb) to LEO with the 27 Merlin 1D engines producing 22,819kN of thrust at sea level, and 24,681 kN in space. When SpaceX finishes development and the rocket is launched, the Falcon Heavy will be the world’s most powerful rocket in operation. SpaceX is aiming for the first demonstration flight of the Falcon Heavy in mid-2017.

Dragon capsules

In 2005, SpaceX announced plans to pursue a human-rated commercial space program through the end of the decade. The Dragon is a conventional blunt-cone ballistic capsule which is capable of carrying cargo or up to seven astronauts into orbit and beyond. In 2006, NASA announced that the company was one of two selected to provide crew and cargo resupply demonstration contracts to the ISS under the COTS program. SpaceX demonstrated cargo resupply and eventually crew transportation services using the Dragon. The first flight of a Dragon structural test article took place in June 2010, from Launch Complex 40 at Cape Canaveral Air Force Station during the maiden flight of the Falcon 9 launch vehicle; the mock-up Dragon lacked avionics, heat shield, and other key elements normally required of a fully operational spacecraft but contained all the necessary characteristics to validate the flight performance of the launch vehicle
In 2009 and 2010, Musk suggested on several occasions that plans for a human-rated variant of Dragon were proceeding and had a 2- to 3-year time line to completion. In April 2011, NASA issued a $75 million contract, as part of its second-round commercial crew development (CCDev) program, for SpaceX to develop an integrated launch escape system for Dragon in preparation for human-rating it as a crew transport vehicle to the ISS. This Space Act Agreement runs from April 2011 until May 2012, when the next round of contracts are to be awarded. NASA approved the technical plans for the system in October 2011, and SpaceX began building prototype hardware. SpaceX plans to launch its Dragon 2 spacecraft on an unmanned test flight to the ISS in November 2017, and later in 2018, a crewed Dragon will send US astronauts to the ISS for the first time since the retirement of the Space Shuttle. In February 2017 SpaceX announced that two would-be space tourists had put down “significant deposits” for a mission which would see the two private astronauts fly on board a Dragon capsule to the moon and back again. At the press conference announcing the mission Elon Musk said that the cost of the mission would be “comparable” to that of sending an astronaut to the International Space Station; about $70 million US dollars per astronaut in 2017. The mission is slated for late 2018.

In addition to SpaceX’s privately funded plans for an eventual Mars mission, NASA Ames Research Center had developed a concept called Red Dragon: a low-cost Mars mission that would use Falcon Heavy as the launch vehicle and trans-Martian injection vehicle, and the Dragon capsule to enter the Martian atmosphere. The concept was originally envisioned for launch in 2018 as a NASA Discovery mission, then alternatively for 2022, but as of September 2015 it has not been yet formally submitted for funding within NASA. The objectives of the mission would be return the samples from Mars to Earth at a fraction of the cost of the NASA own return-sample mission now projected at 6 billion dollars. In April 2016, SpaceX announced its plan to launch a modified Dragon lander to Mars by 2018. This project is part of a public-private partnership contract between NASA and SpaceX. In early 2017, SpaceX has pushed the mission to the 2020 launch window to have more time to dedicate to other projects such as the Falcon Heavy and the Dragon 2 spacecraft. Later in 2017 cancellation of Red Dragon was announced; SpaceX will concentrate on landing a much larger ship on Mars.

Setbacks

In March 2013, a Dragon spacecraft in orbit developed issues with its thrusters. Due to blocked fuel valves, the craft was unable to properly control itself. SpaceX engineers were able to remotely clear the blockages. Because of this issue, the craft arrived at and docked with the International Space Station one day later than expected.
In June 2015, CRS-7 launched a Dragon capsule atop a Falcon 9 to resupply the International Space Station. All telemetry readings were nominal until 2 minutes and 19 seconds into the flight, when a loss of helium pressure was detected and a cloud of vapor appeared outside the second stage. A few seconds after this, the second stage exploded. The first stage continued to fly for a few seconds before disintegrating due to aerodynamic forces. The capsule was thrown off and survived the explosion, transmitting data until it was destroyed on impact. Later it was revealed that the capsule could have landed intact if it had software to deploy its parachutes in case of a launch mishap. The problem was discovered to be a failed 2-foot-long steel strut purchased from a supplier to hold a helium pressure vessel that broke free due to the force of acceleration. This caused a breach and allowed high-pressure helium to escape into the low-pressure propellant tank, causing the failure. The Dragon software issue was also fixed in addition to an analysis of the entire program in order to ensure proper abort mechanisms are in place for fut